Saint Martin’s University

Project Report

MME 566, A2

Alexander Benson
February 24th, 2021



1 Project Formulation:

The figure on the right is of the 2-D truss system to be studied. - Elements are numbered using the
circled numbers - Nodes are numbered per the bold/blue numbers
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1.1 My specific project specifications are as follows:

Figure 1: The original truss

e Modulus: £ = 100 M Pa
» Forces: F; = 60N, F5 = 110N, F53 = 60N

* Element 1:

- L1 =4m

— A =4%1074m?
* Element 2:

— Loy=4m

— Ay =4 %107*m?
* Element 3:

— L3 =5.6bm

— A3 =4%10"*m?
* Element 4:

- L4 =4m

— A4 =4 % ].0_477’1,2
* Element 5:

— L5 =5.6bm

— A; =4 %107*m?
* Element 6:

- L6 =4m

— Ay =4%107*m?
* Element 7:

— L; =5.65m

— A, =4 %107*m?
* Element &:

— Lg = 5.6bm

— Ag=4%10"*m?
* Element 9:

— Lg=4m

— Ay =4%107*m?
* Element 10:

- L10 =4m

- AlO =4 x 1O*4m2



* Element 11:
- Lll =4m
— All =4 % 10_4m2
1.2 The boundary conditions in effect are:

* Uy, and uy, are both 0

* Upy 1s 0
fiz ) ( Ry, )
fly Rly
fou 0
Fay —60N
J32 0
gy L) —1i0n
Juw [ 0
Jay 0
J5z 0
Fsy —60N
Jox 0
\ fﬁy Y, \ ng y,

2 Global Stiffness Matrix Derivation

2.0.1 The Generalized Stiffness Matrix

Motivation behind finding a generalized transform: Our forces are nodes are all located in
global coordinates, using a reference frame that remains fixed regardless of any motion of the
bodies or the orienation of the element. This system can be expressed as:

Fg = KgUg

Where e is the element, K is the stiffness matrix, and F' and U are are the force and displacement
vectors respectively. They have the subscript ‘G’ to indicate that they are in the global/inertial
reference frame.

The global reference frame has the benefit of being well defined at the surface level, allowing for
an intuitive understanding of the forces on the system and simple expression of node displacement.

It is simpler to calculate displacement on a given node (attached to its parent element) if the forces
are either aligned to the element(more complicated motion is outside the scope of this analysis).
For this reason we would prefer to work in local coordinates. The formula for the local system
looks superficially similar to the global system. The local system is distinct in that the composition
of its stiffness matrix, &, is known and simple:

Ff = K{Uf



1 0 -1 0
0O 0 0 O
where K = 10 1 0
0 0 0 O

This line of thought motivates us towards finding a transformation matrix 7", capable of converting
from global coordinates to local coordinates. This matrix’s inverse would then convert from local
to global coordinates.

With such a transformation matrix, our global displacement/force equation looks like so:
F& =TF;

F& =T 'K{TU¢

Assembling a generalized stiffness matrix The desired transformation from global to local co-
ordinates is expressed as follows:

ui, c s 0 0 Uty c s 0 0

1
Uy, \ _ | —s ¢ 0 0 Uty e | —s ¢ 0 0
w, (| 0 0 ¢ s Uy ==l 0 0 ¢ s |
uy, 0 0 —s ¢ Uzy 0 0 —s ¢

where ¢ = cos(0) and s = sin(0)

This transformation matrix has the added benefit of converting back from local to global when
transposed: its determinant is 1, making its inverse equal to its transpose.

With a transformation matrix defined and knowing that 7-! = 77, a global stiffness matrix can
be assembled via the following formula:

C SC —C —SC

2 2

e T e sc s —sc —S§
K& =TTKT = \ ;

—C —SC C SC

—s¢ —s*> sc 2

While potentially being more computationally expensive than formulating a solution for each in-
dividual element, this generalized approach is both more robust and faster, once computers are
employed.

2.1 The stiffness matrix derivations for individual elements is as follows:
2.1.1 Element1:

0y = Srad
_ FAL __ kN
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2.1.2 Element 2:
0, = Orad

_ By _ kN
ky = BA2 = 1052

[ 1

2, 0
k

f2 ?

2, 0

2.1.3 Element 3:

05 = —4rad
ks = £28 = 7.080%%
1 3
f2y Y
=k 2
flfx ° _%
fiy 3

2.1.4 Element 4:

0, = Orad

ka = £84 = 1041
f2 1
fay \ _ 0
f?ila: B k4 —1
fay 0

2.1.5 Element 5:
05 = Jrad

ks = 525 = 7.080%F

5 1
1x 2
i 5
1 — 2
¥ o =ks|
3x 2
Ik -1
3y 2

O = O
o O O O

o O O O
S = O
o O OO

N
[N

N[

NI N
NI N TE
NI NI

DO =
N | —

N[

o O O O
S = O
o O OO

Uy
U2y
Ugy
’LL4y

oy
u2y
Usy
U3y



2.1.6 Element 6:

O = Srad

ke = £oo = 1011
f% O 0 0 0 U%r
fggx 00 0 0 u%x
13, 0 -10 1 ug,

2.1.7 Element 7:

07 = Grad

ke = £41 = 7.080%%
£l 503 T3 3
f? I 1 _1 _1
47y = ky 0 2 P
J5a -3 —3 3 3
1 4D

2.1.8 Element 8:

Oy = —%rad

ks = 5% = 7.080%F
8 1 1 1 1
fsgm 2, T2 a3
Tol=w| 3 1 1 3
i%x 2oz 3 o
6y 2 T2 T2 2

2.1.9 Element9:

Oy = Orad

ko = £20 = 1011
13, 10 =107 ( u,
9 9
Sy U gy | 00 0 0 ) u,
fow -1 0 1 O U,
2, 00 0 0]«

2.1.10 Element 10:
010 = Orad

ko = BAe = 1058
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2.1.11 Element 11:

011 = Srad
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3 Applying Boundary Conditions

With boundary conditions applied, the problem becomes:

( Ry, 3\
Ry,
0
60N
0
110N
0
0
0
60N
0
Re,

\ Ve

This simplifies the global stiffness matrix, bringing it to:

3 —L—k4 _%Bk. ha 0 _k% %:
0t S . -
—ka 0 1 ?5 +F -3 0 0
0 0 L Ty ST 0 —kg
Ky = —ks %‘f 0 0 Co —ks 4 b
0 0 —kg 0 —k —k
0 0 0 0 i —f
0 0 —ks LS —k10 0
h C, = ks ks C, = ks kz
Where 1—k4+3+3+k9and 2—k2+?+?—|—/€10
(0 ) (s
—60N Uy
0 U3z
—110N U3y
The problem is now formulated as: 0 = K¢bc} Q gy
0 U4y
0 Usg
—60N Usy
\ 0 J \ Utz

4 Solving

Now that boundary conditions have been applied, the displacements can be quickly found via gaus-
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sian elimination or by calculating the inverse of K.
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4.1 Replacing variables with known values:

Ky, = 1000—
m

The displacements will be calculated via gaussian elimination (aka row-reduced echelon form):

13,540
—3,540
—10, 000
0
—3,540
3,540
0
0
0

N

—3,540
13,540
0
0
3,540
—3,540
0
0
0

13.540
—3.540
—10
0
—3.540
3.540
0
0
0

4.2 Displacements

The displacements calculated are:

4.3 Reactions

—3.540 —10 0
13.540 0 0

0 27.080 0

0 0 17.080
3.540 0 0
—3.540 0 —10

0 —10 0

0 0 0

0 —3.540  3.540

We already have a formula for the reactive forces

)
Rlx

—3.540
3.540
0
0
27.080
0
—3.540
—3.540
—10

—10,000 0 —3,540 3,540
0 0 3,540 —3,540
27,080 0 0 0
0 17,080 0 —10,000
0 0 27,080 0
0 —10,000 0 17,080
—10,000 0 —3,540 —3,540
0 0 —3,540 —3,540
—3,540 3,540 —10,000 0
(U, ) (55
Uy —7.4
U3z 4.1
U3y —15.6
U4y = 4.1
Uy ~12.8
Usg 2.7
Usy —-7.4
L U6y ) L 8.2
( 0 )
55 ) 1é5
—7.4
4.1 —go
—15.6
41 = —%)10 N
—12.8 0
2.7 0
—7.4
8.2 00
0
| 115

\

3.540
—3.540

—10

17.080

—3.540

—3.540
0

0
0

—10,000

0

—3,540
—3,540
13,540

3,540
0

—-10

—3.540

—3.540
13.540
3.540

0
0
0
0
—3,540
—3,540
3,540

13, 540
0

0 0o

0 0

0 —3.540

0 3.540
—3.540 —10
—3.540 0
3.540 0
13.540 0

0 13.540 |

0 0 ]
0 —60
—3,540 0
3,540 | —110
—10,000 0
0 0
0 0
0 —60
13,540 0 |




4.4 Solving for element stress

Since stress is equal to strain times the elastic modulus:
o=¢ckE

Since strain is the net change in an elements length, the stress can be calculated once the drift due
to other nodes is subtracted, in other words[1]:

o = £ (w22} — uglz}) In local coordinates

This is easily solved using the transformation matrix that has already derived.

Uiy
E
c==[-1010]{ " 3 local
[ Uy
Ugy
Uiy
E U1
=—| -1 01 0T, v lobal
7 { |: } U2y grova
Ugy
The solution for each element is as follows:
4.4.1 Element1
0 1 0 O 0
100%105Pa [ -10 0 0 0 .
et o v ol oy g 0.0055 (= —185.0kPa
0 0 -1 0 —0.0074
The negative stress indicates compressive stress.
4.4.2 Element 2
1000 0
100%106Pa [ _ 0100 0 B
rrramll At LU S U I PP 0.0041 (= 102.5kPa
0001 —0.0128

The positive stress indicates tensile stress.

4.4.3 Element3

1 _1 0 0
\{i i/ﬁ 0.0055
6 - = 0 0 —0.0074
(00:10Pa |y oy ]| V2 VA = 50.06k Pa}
5.65m 0 0 V2 V2 0.0041
0 0 1 1 —0.0128
V2 V2

10



4.4.4 FElement4

1 000 0.0055
+10°Pa 0100 —0.0074
Hn Lt 00 g 0 1 g |} oooa (= 3000kPa
0 001 —0.0156
4.4.5 Element5
I AV
{log*égipa[_l 01 0] N % 5 { 0.0%41 }:—143.9kPa}
0 0 —% % —0.0156
4.4.6 Element 6
0 1 0 0 0.0041
100%106 Pa N -1 0 O 0 —0.0128 _
e LTV O O g g g 1 | ooom (= TO00kPa
0 0 -1 0 —0.0156
4.4.7 Element 7
\/% % 8 8 0.0041
CHOEEEN N SR R
0 0 _% % —0.0074

4.4.8 Element 8

$ _1% 8 g 0.0041
*10%Pa i 3 0. _
(Gl e N N R T { L0156 }_—143.%13@}
4.4.9 FElement?9
1000 0.0041
. 0100] ]| —00156
el At S R B PP 0.0027 (= —3b-00kPa
000 1 —0.0074
4.4.10 Element 10
1000 0.0041
. 0100] ]| —00128
el At S R B P 0.0082 ( = 1V25kPa
000 1 0
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4.4.11 Element 11

0O 1 0 0 0.0082
105 Pa -1 0 0 0 0
100417213 [_1 0 1 0} 0 0 0 1 0.0027 = —185.0kPa
0O 0 -1 0 —0.0074
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5 Conclusion and Discussion

The appendix can be referenced for the MATLAB script as written.

Table 1 lists the hand calculated results of the investigation/project.

Node | Dir. | Disp.(mm) | Force (N) || Element | Stress (kPa)
1|x 0 0 1 -185.0
y 0 115 (Ren.) 2 102.5
2| x 5.5 0 3 50.06
y -7.4 -60 4 -35.00
3] x 4.1 0 5 -143.9
y -15.6 -110 6 -70.00
4| x 4.1 0 7 50.06
y -12.8 0 8 -143.9
51x 2.7 0 9 -35.00
y -7.4 -60 10 102.5
6 | x 8.2 0 11 -185.0

y 0 115 (Ren.)

Table 2 lists the MATLAB calculated results:

Node | Dir. | Disp.(mm) | Force(N) || Element | Stress(kPa)
1] x 0 0 1 -185.0
y 0 115 (Ren.) 2 102.0
2| x 5.5 0 3 49.92
y -7.4 -60 4 -35.30
3| x 4.1 0 5 -144.5
y -15.6 -110 6 -70.60
4| x 4.1 0 7 49.92
y -12.8 0 8 -144.5
51x 2.7 0 9 -35.30
y -7.4 -60 10 102.2
6| x 8.2 0 11 -185.3

y 0 115 (Ren.)

A careful review of both tables will show that the force and displacement values are identical. The
stresses calculated by hand are slightly different than those calculated by MATLAB. This is not
surprising given that the hand-calculated values were likely to propogate approximation errors at
every calculation step. For this reason the MATLAB calculated results should be assumed to be
the accurate results.

There’s also the fact that the hand calculated results have decimal places that are fixed; without
doing the math on the displacements again it is not possible to calculate more decimals. The MAT-
LAB results can have more decimal places reported as desired.

13



The engineering applications of these results are significant for several reasons:

» Truss systems are a staple of simple bridge design and have applications in high-rise con-
struction

The MATLAB code as written is primarily symbolic and can be adapted to any desired inputs
* A simple modification would likely allow for it to be treated as a subroutine or function

* This serves as a reminder of the importance of:

— Establishing the necessary significant figures needed

— Paying attention to the effect of approximation errors ahead of time. Especially where
hand-calculations are concerned but also with computer calculations

The FEM method is easily programmed symbolically, free programming modules such as
SYMPY may allow for free FEM calculations where paid FEA software is cost-prohibitive

5.1 In summary:

Hand calculations have confirmed the accuracy of a programmatic implementation of FEM. This
introduces the possibility of using simple programming languages (especially symbolic program-
ming) for preliminary structural design.

6 Bibliography:
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7 Appendix
[1]: clear;

4% Creating Symbolic Variables for Each Truss Variable
angle = sym('t', [1,11]);

U= sym('u',[1, 12]);

F=sym('f',[1, 12]);

k_symbols = sym('k',[1,11]);
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[2]: %% Defining Scalars
A = 4e-4;

E = 100e6; /mpa
L =[4,4,5.65,4,5.65,4,5.65,5.65,4,4,4];

k scalar = (A*E)./L;
4% Constructing numeric vectors for each vartiable

angle num = [pi/2,0,-pi/4,0,pi/4,pi/2,pi/4,-pi/4,0,0,pi/2];
F num bc = [0,-60,0,-110,0,0,0,-60,0];

% Node in list order corresponding to each element

element to node=[1:4;.../1
1,2,7,8;...%2
3:4,7:8;...%43
3:6;...7%4
1,2,5,6;...%5
7:8,5:6;.../%6
7: 10,...47
5:6,11:1 .. /8
5:6,9: 10 .%9
7:8,11:1 L2410
11:12,9: 10],411

[3]:| %% Creating empty element matrices, for convenience
El = sym(zeros(12));
E2 = sym(zeros(12));
E3 = sym(zeros(12));
E4 = sym(zeros(12));
E5 = sym(zeros(12));
E6 = sym(zeros(12));
E7 = sym(zeros(12));
E8 = sym(zeros(12));
E9 = sym(zeros(12));
E10 = sym(zeros(12));
E11l = sym(zeros(12));

15



[4]:| 7% Creating a symbolic transformation Matriz

syms T(theta) Trans(theta)

T(theta)=[cos(theta), sin(theta),0,0;...
-sin(theta),cos(theta),0,0;...
0,0,cos(theta),sin(theta);...
0,0,-sin(theta),cos(theta)];

Trans (theta)=T(theta).'*[1,0,-1,0;0,0,0,0;-1,0,1,0;0,0,0,0]*T(theta);

[58]:|%% Defining stiffness matrices for each element
/4 This could be done with a for loop, however we would lose
/ the individual element matrices
E1([1:4],[1:4])=k_symbols(1)*Trans(angle(1));
E2([1:2,7:8],[1:2,7:8])=k_symbols(2)*Trans(angle(2));
E3([3:4,7:8],[3:4,7:8])=k_symbols(3)*Trans(angle(3));
E4([3:6],[3:6])=k_symbols(4)*Trans(angle(4));
E5([1:2,5:6],[1:2,5:6])=k_symbols(5)*Trans(angle(5));
E6([7:8,5:6],[7:8,5:6])=k_symbols(6)*Trans(angle(6));
E7([7:8,9:10],[7:8,9:10])=k_symbols(7)*Trans (angle(7));
E8([5:6,11:12],[5:6,11:12])=k_symbols(8)*Trans(angle(8));
E9([5:6,9:10],[5:6,9:10])=k_symbols(9)*Trans(angle(9));
E10([7:8,11:12],[7:8,11:12])=k_symbols(10)*Trans(angle(10));
E11([11:12,9:10],[11:12,9:10])=k_symbols(11)*Trans(angle(11));

(6]:|%7% Creating a global matriz
K_sym = E1+E2+E3+E4+E5+E6+E7+E8+E9+E10+E11;

[71:| %% Converting the symbolic solution to numeric
K = subs(K_sym, [angle, k_symbols], [angle num,k_scalar]);

(8] : | %% Boundary Condition Matriz
K bc=K([3:11],[3:11]1);

[9]: K _num_inv = inv(K_bc);
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[10]: U_num = double(K num_inv*F _num bc.');/’

(11]: U = [0,0,U num.',0]."';%"’

[12]: K_num_glob = double(X);

[13]: F = K_num_glob*U;

[23]: sigma = [];
difference = [-1,0,1,0];

for i = 1:11

local disp = [1,0,-1,0];

nodes = element to_node(i,:);

EL = E/L(i);

displacements = U(nodes);

theta_val = angle_num(i);

transform = T(theta_val);

sigma(i)= EL*difference*transform+displacements;
end
sigma = sigma.';/’

[271: U
F
sigma

U =

0

0

0.0055

-0.0074

0.0041

-0.0156
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sigma

.0041
.0128
.0027
.0074
.0082

.0000
.0000
.0000
.0000
.0000
-110.

0000

.0000

.0000
.0000
115.

0000

1.0e+05

.85630
.0220

0.4992

.3530
.4453
.7060
.4992
.4453
.3530
.0220
.85630
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