SAINT MARTIN'S UNIVERSITY

Project: Four Bar Linkage

Alexander Benson

October 13, 2020

1 Project

1.1 Part 1

Completion of Part 1 is demonstrated by parts 2 and 3.

Special note goes to Bulatović and Dordević [1] for the derivation of part 1.

1.2 Part 2

1.3 Part 3

Optimal Linkage Lengths are as follows:

a: 1, h: 1

b: 1, g: 1

1.4 Constraint Derivation

The four bar linkage derived is explicitly a crank-crank system. To be grashof compliant such a system must meet the following equations:

- The term $T_1 = g + h a b$ must be negative, therefore $g + h \le a + b$
- The term $T_2 = b + g a h$ must be negative, therefore $b + g \le a + h$
- The term $T_3 = b + h a g$ must be positive, therefore $b + h \ge a + g$

To make these constraints compatible with FMINCON, they are rearranged to:

$$C = \begin{bmatrix} g+h-a-b \\ b+g-a-h \\ a+g-b-h \end{bmatrix} \le 0$$

1.5 Lessons Learned

This project was a reminder of the importance of understanding the team you have:

- How they handle ambiguity
- The quality, rate, and timeliness of their work and who can be relied on to work independently

• Their communication style and skills - Their willingness to make decisions without consulting the team: the date extension surprised me given that I thought the team more than capable of solving the project given a work day's worth of modest effort.

The difficulty of deriving a formula/analysis function was reasonable: in my experience taking complicated concepts and quantifying them is the majority of any real-world optimization project.

2 Bibliography

[1] R. R. Bulatović and S. R. Dordević, "On the optimum synthesis of a four-bar linkage using differential evolution and method of variable controlled deviations," Mechanism and Machine Theory, vol. 44, no. 1, pp. 235–246, Jan. 2009, doi: 10.1016/j.mechmachtheory.2008.02.001.

3 Code

```
[]: clear; clc;
     %%%%%%%%%%% Main File %%%%%%%%%%%%%%
     %%%%%Graduate Four-Bar Linkage%%%%%%
     %% Design Variables
     x0 = [1,2,2,2];
     LB = [1,1,1,1];
     UB = [4,4,4,4];
     %% Parameter Completion
     a = []; b = []; aeq = []; beq = [];
     %Optimize
     options = optimset('Display', 'off', 'MaxFunEvals', 5e4, 'MaxIter', 1e6);
     [xopt, fopt] = fmincon(@objfun, xO, a, b, aeq, beq, LB, UB, @nonlincon, options);
     C = fourbarfun(xopt);
     objPath = importdata('goal_traj.mat');
     optC = [objPath(:,1), objPath(:,2)].';
     fprintf("Optimal Linkage Lengths are as follows:\n")
     fprintf("a: %3.3g, h: %3.3g\n b: %3.3g, g: %3.3g", xopt(1),xopt(2),...
         xopt(3), xopt(4)
     plot(C(1,:), C(2,:), 'b-',optC(1,:),optC(2,:),'r*');
     legend('Design', 'Desired')
     title('Figure 2: Results of Linkage Optimization')
```

```
xlabel('Horizontal Motion of C')
     ylabel('Vertical Motion of C')
[]: function [out] = objfun(x)
     % The Objective Function of the Four Bar Linkage Project
     C = fourbarfun(x);
     objPath = importdata('goal_traj.mat');
     optC = [objPath(:,1), objPath(:,2)].';
     out = 0.5*sum((optC(1)-C(1)).^2)+0.5*sum((optC(2)-C(2)).^2);
     end
[]: function [C,Ceq] = nonlincon(x)
     %Non Linear Constraints for the Four Bar Linkage Assignment
     a = x(1); %Length of Input Link
     h = x(2); %Length of Floating Link
     b = x(3); "Length of Output Link
     g = x(4); %Length of Ground Link
     C(1) = g+h-a-b;
     C(2) = b+g-a-h;
     C(3) = -b-h+a+g;
     Ceq=[];
     end
[]: function current_traj = fourbarfun(x)
     % A function describing the planar motion of a four bar linkage
     % Per MME 523, Project 1, P2
     %% Defining Links
     a = x(1); %Length of Input Link
     h = x(2); %Length of Floating Link
     b = x(3); %Length of Output Link
     g = x(4); %Length of Ground Link
     %% Predefined Coordinates
     A = [0,0];
     B = [g, 0];
     %% Defining Rotation
     steps = 50;
     omega = 1;
     delta = (2*pi)/(omega*steps);
```

```
alpha = linspace(pi/2, 5*pi/2-delta, steps);
%% Pathing
C = zeros(2, steps);
D = zeros(2, steps);
for index = 1:steps
    alpha_Val = alpha(index);
    D(:,index) = a*[cos(alpha_Val);sin(alpha_Val)];
   s = sqrt((B(1) - D(1, index))^2 + (B(2) - D(2, index))^2);
    %At -90 and 90, arctan is asymptotic, positive inf -> 90degrees
    zeta = atan(D(2,index)/(B(1)-D(1,index)));
    gamma = acos((s^2+b^2-h^2)/(2*s*h));
%% Atan must be inverted for negative denom
    if B(1)-D(1,index) <= 0
       zeta = -zeta;
    end
%% Gamma must be inverted when B passes below the ground link
    if D(2, index) \le 0
       gamma = -gamma;
    end
    beta = pi-gamma-zeta;
    C(:,index) = [A(1)+B(1)+b*cos(beta);A(2)+B(2)+b*sin(beta)];
end
current_traj = C;
end
```